Birzeit University
Faculty of Engineering
Department of Electrical Engineering
Engineering Probability and Statistics ENEE 331
Problem Set (5)
Estimation Theory

Instructor: Dr. Wael Hashlamoun

1) A manufacturer of semiconductor devices takes a random sample of size n of chips and tests them, classifying each chip as defective or non-defective. Let $\mathrm{X}_{\mathrm{i}}=0$ if the chip is non-defective and $X_{i}=1$ if the chip is defective.
a. Find the mean and variance of the sample average defined as $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
b. Compare the sample variance for the case when $\mathrm{n}=50$ and $\mathrm{n}=100$. Comment on the effect of sample size on the variance of the sampling distribution
c. If p is the probability of a defective chip, find an unbiased estimator of p.
2) Consider a random sample of size n taken from a discrete distribution, the pmf of which is given by: $f(x)=\theta^{x}(1-\theta)^{1-x}, \mathrm{x}=0,1$. Two estimators for θ are proposed
$\hat{\Theta}_{1}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
$\hat{\Theta}_{2}=\frac{n \bar{X}+1}{n+2}$
a. Which one of these two estimators is an unbiased estimator of the parameter θ ?
b. Which one has a smaller variance?
3) In a random sample of 500 persons in the city of Ramallah, it was found that 372 voted for Abu Mazen in the 2005 presidential elections for the Palestinian Authority. Determine a 95% confidence interval for p , the actual proportion of Ramallah residents supporting Abu Mazen.
4) The compressive strength of concrete is being tested by a civil engineer. He tests 12 specimens and obtains the following data (in psi)
$\begin{array}{llllllll}2216 & 2237 & 2249 & 2204 & 2225 & 2301 & 2281 & 2283\end{array}$
$\begin{array}{llll}2318 & 2255 & 2275 & 2295\end{array}$
a. Find point estimates for the mean and variance of the strength
b. Construct a 95% confidence interval on the mean strength
c. Construct a 95% confidence interval on the variance of the strength.
5) A random sample of $n=36$ observations has been drawn from a normal distribution with mean 50 and standard deviation 12 . Find the probability that the sample mean is in the interval 47 to 53.
6) Given the following pair of measurements, which are suspected to be linearly related. Do a regression analysis to find the linear relationship $y=\alpha x+\beta$

X_{i}	0.77	4.39	4.11	2.91	0.56	0.89	4.09	2.38	0.78	2.52
Y_{i}	14.62	22.21	20.12	19.42	14.69	15.23	24.48	16.88	8.56	16.24

7) A machine produces metal rods used in an automobile suspension system. A random sample of 9 rods is selected and the diameter is measured. The resulting data (in mm) are:

8.24	8.23	8.20	8.21	8.22	8.28	8.17	8.26	8.19

If the sampling comes from a normal population with a mean rod diameter μ and a variance σ^{2}, find
a. point estimates for the mean and the variance
b. a 95% confidence interval on the mean
c. a 95% confidence interval on the variance
8) A random sample of $n=10$ structural elements is tested for compressive strength. We know that the true mean compressive strength is $\mu=5000 \mathrm{psi}$ and the standard deviation is $\sigma=100$ psi. Find the probability that the sample mean compressive strength exceeds 4985 psi .
9) Let X_{1} and X_{2} be a sample of size two drawn from a population with mean μ and variance σ^{2}. Two estimators for μ are proposed:
$\hat{\mu}_{1}=\frac{X_{1}+X_{2}}{2}$
$\hat{\mu}_{2}=\frac{X_{1}+2 X_{2}}{3}$
Which is the better estimator and in what sense?
10) Suppose that X has the following discrete distribution
$P(X=x)= \begin{cases}1 / 3 & x=1,2,3 \\ 0 & \text { otherwise }\end{cases}$
A random sample of $n=200$ is selected from this population. Approximate the probability that the sample mean is greater than 2.1 but less than 2.5 .
11) The amount of waiting time that a customer spends waiting at a bank is a random variable with mean 8.2 minutes and standard deviation 1.5 minutes. Suppose that a random sample of $\mathrm{n}=50$ customers is observed. Find the probability that the average waiting time for these customers is less than 8 minutes.
12) A computer, in adding numbers, round each number to the nearest integer.

Suppose that all rounding errors are independent and uniformly distributed over (-0.5 , $0.5)$. If 1500 numbers are added, what is the probability that the magnitude of the total error exceeds 15 ?
13) Suppose that X has a normal distribution with mean μ and variance σ^{2}, where μ and σ^{2} are unknown. A sample of size 15 yielded the values $\sum_{i=1}^{15} X_{i}=8.7$ and $\sum_{i=1}^{15} X_{i}{ }^{2}=27.3$. Obtain a 95% confidence interval on the variance.

